Quasi-approximation for Stefan problem of nearly spherical phase change materials
نویسندگان
چکیده
منابع مشابه
Nonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملInterface dynamics for quasi-stationary Stefan problem
We investigate the interface dynamics in Laplacian growth model, using the conformal mapping technique. Starting from the governing equation obtained by B.Shraiman and D.Bensimon, we derive intergro-differential evolution equation of interphase dynamics. It is shown that such representation of the conformal mapping technique is convenient for computer simulations of the quasi-stationary Stefan ...
متن کاملnonlinear two-phase stefan problem
in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.
متن کاملClassical two - phase Stefan problem for spheres
The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered...
متن کاملOn the one-phase reduction of the Stefan problem with a variable phase change temperature
The one-phase reduction of the Stefan problem, where the phase change temperature is a variable, is analysed. It is shown that problems encountered in previous analyses may be traced back to an incorrectly formulated Stefan condition. Energy conserving reductions for Cartesian, cylindrically and spherically symmetric problems are presented and compared with solutions to the two-phase problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1324/1/012069